
10

Instruction-Level Abstraction (ILA): A Uniform Specification
for System-on-Chip (SoC) Verification

BO-YUAN HUANG and HONGCE ZHANG, Princeton University, USA

PRAMOD SUBRAMANYAN, Indian Institute of Technology Kanpur, India

YAKIR VIZEL, Technion Israel Institute of Technology, Israel

AARTI GUPTA and SHARAD MALIK, Princeton University, USA

Modern Systems-on-Chip (SoC) designs are increasingly heterogeneous and contain specialized semi-

programmable accelerators in addition to programmable processors. In contrast to the pre-accelerator era,

when the ISA played an important role in verification by enabling a clean separation of concerns between

software and hardware, verification of these “accelerator-rich” SoCs presents new challenges. From the per-

spective of hardware designers, there is a lack of a common framework for formal functional specification

of accelerator behavior. From the perspective of software developers, there exists no unified framework for

reasoning about software/hardware interactions of programs that interact with accelerators.

This article addresses these challenges by providing a formal specification and high-level abstraction for

accelerator functional behavior. It formalizes the concept of an Instruction Level Abstraction (ILA), devel-

oped informally in our previous work, and shows its application in modeling and verification of accelerators.

This formal ILA extends the familiar notion of instructions to accelerators and provides a uniform, modular,

and hierarchical abstraction for modeling software-visible behavior of both accelerators and programmable

processors. We demonstrate the applicability of the ILA through several case studies of accelerators (for im-

age processing, machine learning, and cryptography), and a general-purpose processor (RISC-V). We show

how the ILA model facilitates equivalence checking between two ILAs, and between an ILA and its hardware

finite-state machine (FSM) implementation. Further, this equivalence checking supports accelerator upgrades

using the notion of ILA compatibility, similar to processor upgrades using ISA compatibility.

CCS Concepts: • Computer systems organization → Architectures; • Hardware → Application-

specific VLSI designs; Functional verification; Electronic design automation;

Additional Key Words and Phrases: System on chip, hardware specification, application-specific accelerator,

architecture, instruction-level abstraction, formal verification, equivalence checking

This work was supported by the Applications Driving Architectures (ADA) Research Center, a JUMP Center co-sponsored

by SRC and DARPA.

Authors’ addresses: B.-Y. Huang and H. Zhang, Princeton University, Princeton, 1 Nassau Hall, Princeton, New Jersey,

08544, USA; emails: {byhuang, hongcez}@princeton.edu; P. Subramanyan, Indian Institute of Technology Kanpur, Nankari,

Kalyanpur, Kanpur, Uttar Pradesh 208016, India; email: spramod@cse.iitk.ac.in; Y. Vizel, Technion Israel Institute of Tech-

nology, Haifa, Viazman 87, Technion City, Haifa, Haifa District 3200003, Israel; email: yvizel@cs.technion.ac.il; A. Gupta

and Sharad Malik, Princeton University, Princeton, 1 Nassau Hall, Princeton, New Jersey, 08544, USA; emails: aartig@

cs.princeton.edu, sharad@princeton.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

1084-4309/2018/12-ART10 $15.00

https://doi.org/10.1145/3282444

ACM Transactions on Design Automation of Electronic Systems, Vol. 24, No. 1, Article 10. Pub. date: December 2018.

mailto:permissions@acm.org
https://doi.org/10.1145/3282444

10:2 B.-Y. Huang et al.

ACM Reference format:

Bo-Yuan Huang, Hongce Zhang, Pramod Subramanyan, Yakir Vizel, Aarti Gupta, and Sharad Malik. 2018.

Instruction-Level Abstraction (ILA): A Uniform Specification for System-on-Chip (SoC) Verification. ACM

Trans. Des. Autom. Electron. Syst. 24, 1, Article 10 (December 2018), 24 pages.

https://doi.org/10.1145/3282444

1 INTRODUCTION

Today’s computing platforms are increasingly heterogeneous, a trend that is expected to continue
into the foreseeable future as per the International Technology Roadmap for Semiconductors [22].
In addition to programmable processors—both general purpose and domain specific such as Graph-
ics Processing Units (GPUs)—today’s platforms contain dedicated accelerators in order to meet
the power-performance requirements posed by emerging applications. These accelerators may be
tightly coupled, i.e., part of the processor pipeline, or loosely coupled, interacting with the proces-
sor through shared memory [27]. The latter form is dominant and the focus of this article. Apple’s A
series of processors illustrate this growth in accelerators; the A8 processor has 30 accelerators [61]
while the A10 has 40.

Accelerator-rich platforms pose two distinct verification challenges. The first challenge is
constructing meaningful specifications for accelerators that describe behavior exposed at the hard-
ware/software interface. Such specifications are important not just for correct design/verification
of hardware, but are also required to drive software and firmware development, both of which
must often be done before the hardware is “taped-out.” Specifications are also required to reason
about portability between different generations of accelerator architectures. They can mitigate
the software incompatibility risk involved in the implementation of microarchitectural enhance-
ments. Further, it is important to note that specifications must necessarily be an abstraction of
hardware functionality. Detailed models, e.g., Register-Transfer Level (RTL) descriptions, expose
cycle-level behavior that is not part of the hardware/software interface and thus are not suitable
as specifications. In addition, RTL descriptions are also undesirable as specifications because the
detailed nature of these models means they are not amenable to scalable formal analysis.

The second challenge is reasoning about hardware-software interactions from the perspective of
software. For software that runs exclusively on a programmable processor, its execution semantics
are defined by the processor’s instruction set architecture (ISA) specification. Thus, the ISA serves
as a suitable abstraction of the underlying processor hardware for software verification. However,
similar abstractions of hardware for reasoning about software interacting with accelerators are
lacking. Software typically accesses accelerators through memory-mapped input-output (MMIO)
instructions that map memory and registers inside the accelerators to specific addresses. From the
perspective of the ISA, accelerator interactions appear to be just loads/stores of these addresses.
However, these loads/stores trigger specific functionality implemented by the accelerator logic not
modeled by the processor’s load/store instruction semantics. Further, the accelerator may access
some memory shared with the processor, and potentially interrupt the processor on completion of
specific functions. These aspects make the ISA incomplete for modeling accelerator interactions.
As a result, reasoning about software that interacts with accelerators, an increasingly important
task in today’s SoCs, is usually done through ad-hoc abstractions/modeling techniques that com-
pose ISA-level models with FSM models of accelerators (e.g., in Verilog/VHDL). This results in
an abstraction gap between the ISA and the low-level hardware FSM, making software/hardware
co-verification with accelerators very challenging.

In this work, we propose a uniform and formal abstraction for processors and accelerators that
captures their software-visible functionality. This abstraction is called an Instruction-Level Ab-
straction (ILA) and is based on the familiar notion of computation triggered by “instructions.” For

ACM Transactions on Design Automation of Electronic Systems, Vol. 24, No. 1, Article 10. Pub. date: December 2018.

https://doi.org/10.1145/3282444

Instruction-Level Abstraction for SoC Verification 10:3

a processor, the ILA is based on the ISA. For an accelerator, the insight is that commands at its
interface are akin to instructions in a processor. Thus, just as the ISA models processor behav-
ior through specifying state changes resulting from each instruction, the ILA models accelerator
behavior by specifying state changes resulting from each of its “instructions,” i.e., its commands.
Further, as with ISAs, this modeling can distinguish the state that is persistent between instruc-
tions (architectural state), from implementation state (micro-architectural state). Top-down this
modeling provides a specification for functional verification of hardware, and bottom-up it pro-
vides an abstraction for software/hardware co-verification.

The ILA, like an ISA, has the following useful attributes. It provides

(i) a modular functional specification as a set of instructions;
(ii) a meaningful state abstraction in terms of architectural state, i.e., a state that is persistent

between instructions, while abstracting away an implementation state; and
(iii) a specification for each instruction in the form of state update functions for architectural

state.

In modeling designs with complex instructions, it is sometimes easier to describe the architec-
tural state update function as a sequence of steps, i.e., an algorithm. These steps may be required
of all implementations, in which case they are considered part of the specification, or may only
indicate a possible implementation. The ILA model allows this sequencing to be expressed through
hierarchy in instructions, where an instruction can itself be modeled as a sequence of two different
kinds of child instructions.

This work builds on [62, 64] which introduced an informal notion of the Instruction-Level Ab-
straction (ILA). That work viewed an ILA as a finite state system and focused on synthesizing
ILAs using program synthesis techniques [3, 41]. The focus of this work is on formalizing the ILA
as an instruction-centric operational model, well-suited as an interface between sequential soft-
ware and the underlying hardware. To treat processors and accelerators uniformly, the ILA model
explicitly includes functions that perform the fetch-decode-execute of instructions. This is espe-
cially useful in reasoning about a system of interacting ILA models, one ILA per processing unit,
where the decode function (dependent on the fetch function) captures the condition whether an
instruction is enabled to execute or not, and the execute part actually performs the update of the
software-visible state. Note that the earlier finite state model could capture only the execute part.
Furthermore, we have introduced hierarchy into the ILA model, via the notions of child (sub- and
micro-) instructions, where an instruction at a higher level can be represented as a sequence of
child instructions at a lower level. Thus, the granularity of ILA instructions can vary, ranging from
processor instructions to software functions, but the focus is on modeling software-visible states
and their updates. Finally, this work showcases the usefulness of the formal ILA model and its
applications in verification through a set of rich case studies comprising accelerators from diverse
application domains (advanced encryption, image processing, machine learning) and a processor
(RISC-V Rocket Core). The earlier papers had focused only on an accelerator for encryption.

Note that while we describe the verification applications using ILAs in detail, we do not claim the
verification techniques to be our central contribution—indeed, we have used standard verification
techniques and commercial off-the-shelf verification tools in our case studies. The point to note is
that the ILA model enables application of these techniques in a compositional manner, where the
set of instructions naturally provides an instruction-based decomposition into simpler verification
tasks.

Contributions of this Article

Overall this article makes the following contributions:

ACM Transactions on Design Automation of Electronic Systems, Vol. 24, No. 1, Article 10. Pub. date: December 2018.

10:4 B.-Y. Huang et al.

Table 1. Comparison of Hardware and System-Level Modeling Frameworks

Modeling Language/Framework
Level of Abstraction Formal

SemanticsAlg. Func. CA RTL GL

Verilog/VHDL � � � Yes

Design Specific Models in C/C++ and so forth (e.g., [5, 16, 60]) � � � No

Chisel, PyMTL [10, 45] � � � No

System-Level Modeling Frameworks [7, 9, 14, 34, 36, 51, 53] � � Yes

ILA (this work) � � � Yes

Column labels are Algorithmic (Alg.), Functional (Func.), Cycle Accurate (CA), Register Transfer Level (RTL), and Gate

Level (GL).

—It provides a formal model for the ILA (Section 3). This addresses critical modeling issues in
both processors and accelerators including gaps in previous ISA formal models. Top-down
this model provides a formal specification for use in hardware verification, and bottom-up
an abstraction for use in software/hardware co-verification that is uniform across accelera-
tors and processors.

—It supports hierarchy (Section 3.2) in modeling instructions which is missing from the earlier
formal ISA models [59]. In particular, it makes the important distinction between hierarchy
in the specification and hierarchy in the implementation.

—It demonstrates the applicability of the ILA model through several case studies on acceler-
ators (AES, RBM, Gaussian Blur) and the RISC-V Rocket processor (Section 4).

—It demonstrates the value in verification across models—between two ILAs, and between ILA
and FSM models—through successful case studies (Section 5), including finding a bug in the
RISC-V Rocket processor core. Verifying FSM implementations against ILA specifications
provides the basis for ILA-compatible accelerator replacement.

2 MOTIVATION AND BACKGROUND

2.1 System-Level/Hardware Modeling Frameworks

Table 1 categorizes notable system-level and hardware modeling frameworks in terms of their
level of abstraction and the suitability of their models for formal analysis. The “traditional” ap-
proach to processor-based platform design uses (i) functional models of processor ISAs (typically
developed in C/C++) to define architectural behavior, and (ii) cycle-accurate simulators (e.g., ESEC
and gem5 [5, 16], also in C/C++) to explore the microarchitectural design space. Finally, the im-
plementation typically uses RTL descriptions in Verilog/VHDL. This approach corresponds to the
first two rows in Table 1.

Recent years have seen increased interest in system-level modeling that raises the level of
abstraction for design and verification. SystemC in particular, has seen significant adoption in
system/transaction-level modeling. However, RTL designs in Verilog, corresponding to SystemC
transaction-level models, are usually separately constructed by hand. Ensuring that the system-
level models in SystemC and the corresponding RTL are in agreement is a challenging problem.
Chisel [10] and PyMTL [45] propose to address this challenge by providing unified domain-specific
embedded languages in Scala and Python, respectively, for constructing functional, cycle-accurate,
and RTL models. While this can mitigate some challenges in testing equivalence among these var-
ious models, bugs still slip through the cracks. In particular, these languages do not have formal
precisely defined semantics which limits automated reasoning. This makes it hard to provide guar-
antees of equivalence between models at different levels of abstraction.

Models with formally defined operational semantics are amenable to formal analyses such as
equivalence and property checking. Examples include StateCharts, SystemC, Esterel, Transaction

ACM Transactions on Design Automation of Electronic Systems, Vol. 24, No. 1, Article 10. Pub. date: December 2018.

Instruction-Level Abstraction for SoC Verification 10:5

Fig. 1. ILA for an AES accelerator.

Level Modeling (TLM), and others [1, 4, 9, 14, 31, 34–36]. A notable effort in this category is Blue-
Spec, a high-level specification and design language that describes hardware as sets of state change
rules (guarded atomic actions) which execute atomically [7, 51]. The BlueSpec compiler synthe-
sizes the circuits and exploits parallelism with a scheduler to choose the interleaving of rules
automatically [28, 36]. BlueSpec has well-defined operational semantics and supports modular
verification using SMT solvers and interactive theorem provers [29, 67].1

2.2 Desired Hardware Abstraction Characteristics

A given hardware design can be abstracted in many different ways. In this article, we argue for
abstractions of hardware that satisfy two important properties:

—The abstraction cleanly separates hardware and software verification concerns. This re-
quires that the abstraction precisely codify the hardware/software interface so that software
and hardware can be separately developed and verified to be conformant with the interface.

—The abstraction treats programmable processors and accelerators uniformly. Software ver-
ification in future architectures will need to reason about accelerator interactions in addi-
tion to processor ISAs, while hardware verification will need to reason about the software
interface presented by these accelerators. A uniform abstraction for these architectures is
required in order to provide a common accelerator-agnostic framework for this verification.

None of the frameworks in Table 1 satisfy these properties. In this article, we take a step toward
addressing this gap by introducing a uniform and hierarchical ILA: an abstraction of hardware that
precisely delineates the hardware/software interface. Our notion of the ILA treats programmable
processors and semi-programmable accelerators uniformly, including hierarchical modeling of mi-
croarchitecture for accelerators, similar to processors. Past work has shown how abstractions at
the instruction level can be successfully used for software/hardware co-verification [63].

3 FORMAL MODELING

In this section, we formally define the ILA model and its execution semantics. A motivating ex-
ample used through this section is shown in Figure 1, for an accelerator (from opencores.org) [38]
that implements the Advanced Encryption Standard (AES). The derived ILA instructions are shown
in Figure 1(a): six instructions read/write configuration registers, one starts encryption, and one
checks the completion status. As discussed earlier, these “instructions” correspond to commands
presented at the accelerator interface by the processor.

1See Section 7 for a detailed comparison of the ILA with BlueSpec and other related efforts.

ACM Transactions on Design Automation of Electronic Systems, Vol. 24, No. 1, Article 10. Pub. date: December 2018.

10:6 B.-Y. Huang et al.

3.1 ILA

This section defines the ILA, without considering hierarchy. An ILA A is a tuple:
〈S, I ,W ,V , F ,D,N 〉, where

S is a vector of state variables,

I is a vector of initial values of the state variables,

W is a vector of input variables,

V : (S ×W) → B is the valid function, B = {0, 1},
F : (S ×W) → bvecw is the fetch function,

D = {δi : bvecw → B} is the set of decode functions,

N = {Ni : (S ×W) → S } are the next state functions.

The state variables in S can be of type Boolean, bitvector, or array (representing memory). For
processors, S includes architectural registers, flag bits, data and program memory. For accelerators,
S includes memory-mapped registers, internal buffers, output ports to on-chip interconnect, data
memory, and so forth. We refer to these state variables as “architectural state” because like an
ISA’s architectural state, they are persistent across instructions. In the ILA for the AES example,
as shown in Figure 1(b), the architectural state variable Addr denotes the address of data to encrypt,
and Length is the data length. I denotes the set of initial values of the corresponding architectural
states in S . The vector of input variables W includes input ports of the hardware module, such
as processor interrupt signals and accelerator command inputs. For example, input InData in the
AES ILA is the data from the memory system for memory-mapped accesses.

Instructions in an ILA follow the fetch/decode/execute paradigm, similar to a processor ISA.
To model event-driven accelerators, we include a valid function V : (S ×W) → B that indicates
if an instruction is triggered based on state and input values. For example, the AES accelerator

executes instructions only when InAddr is within a specified range, i.e., V (S,W) � (InAddr ≥
0xFF00) ∧ (InAddr ≤ 0xFF10).

The opcode of the instruction is modeled as a bitvector of width w (denoted bvecw). If the in-
struction is triggered (i.e., ifV is true), then the fetch function F : (S ×W) → bvecw indicates how
it is extracted from the state and inputs. For processors, the opcode is fetched from the program

memory location pointed to by the program counter, i.e., F (S,W) � read (IMEM, PC). If interrupt
modeling is desired, F concatenates this with the interrupt signals (inputs). Similarly, accelerators
extract the opcode for decoding instructions. The opcode for the AES example is the concatenation
of the memory-mapped input signals, as shown in Figure 1(b).

Each instruction (indexed by i) is associated with a decode function δi : bvecw → B, indicating
whether it is issued. For example, as shown in Figure 1(b), the instruction START_ENCRYPT is issued
only when it receives a “store value 1 to address 0xFF00” command at the interface. The set of all
decode functions isD = {δi |0 ≤ i < k }; k is the number of instructions. In an ILA, only one instruc-
tion can be issued at a time, i.e., D is one-hot encoded. Non-determinism should be modeled with
explicit choice variables (inputs) provided by the external environment. Note the valid function V
returns true if and only if one decode function returns true.

Finally, each instruction is associated with a next state function Ni : (S ×W) → S , which rep-
resents the state update when the instruction is executed. The set of all next state functions in the
ILA is N = {Ni |0 ≤ i < k }.

To summarize, Figure 1(a) shows the description of all eight instructions of the AES accelerator.
Figure 1(b) shows the ILA definitions for S , I ,W ,V , F , and the decode (δi) and state update functions
(Ni) for two of the instructions.

ACM Transactions on Design Automation of Electronic Systems, Vol. 24, No. 1, Article 10. Pub. date: December 2018.

Instruction-Level Abstraction for SoC Verification 10:7

Fig. 2. Child-ILA for an AES accelerator.

3.2 Hierarchical ILAs

In modeling designs with complex instructions, it is often easier to describe the architectural state
update function as a sequence of steps, i.e., an algorithm. These steps may be required of all imple-
mentations, in which case they are considered part of the specification, or may only indicate one
possible implementation. For example, the Intel x86 architecture [39] specifies the string copy in-
struction REP MOVS as a sequence where the MOVS instruction is repeated until register ECX (count)
is decremented to 0. Note that the state update performed by this instruction at the architectural
level is not atomic, and this fact needs to be captured in the architecture model. Similarly, in the
AES accelerator in Figure 1, the START_ENCRYPT instruction involves reading data, encrypting it,
and writing the result. The encryption itself is also a complex operation that needs to be described
as a sequence of steps.

Child ILAs. To support modeling such complex instructions, we extend the ILA definition from
Section 3.1 to support hierarchy. A hierarchical ILA may contain child-ILAs, each of which de-
scribes the sequence of steps in the complex instruction. Instructions in child-ILAs, referred to
as child-instructions, also follow the fetch/decode/execute paradigm. These may, in turn, contain
other child-ILAs, and we refer to an ILA containing a child as a parent-ILA. In the AES example,
START_ENCRYPT is modeled by a child-ILA with child-instructions for message loading, encryption,
and storing results, as shown in Figure 2(a). The child-instruction ENCRYPT is further modeled by
a child-ILA for the actual encryption algorithm. As we will show later in Section 4.1, two different
child-ILAs can be used to describe two different AES implementations.

A child-ILA is defined similar to an ILA. Its state variables are denoted as Sc , some of which
may be shared with the parent-ILA.W c is the set of its input variables, and is a subset of inputs of
the parent-ILA. The initial values are I c , and the initial values of the shared state variables are the
same as that of the parent-ILA. For the AES example in Figure 2(a), the child-ILA has no inputs and
contains three additional state variables (Counter, RdData, and EncData). The other components of
the child-ILA: V c , F c , Dc , and N c are similarly defined in terms of Sc andW c . The state variables
shared between the child-ILA and the parent-ILA are in lock step, since they denote shared state,
i.e., updates to the shared states are visible to the parent-ILA when a child-instruction is executed,
and vice versa. For the AES example in Figure 1, the instruction START_ENCRYPT of its parent-ILA
updates shared state AesState to 1 and keeps Mem unchanged; this starts the child-ILA with the
child-instruction LOAD_BLOCK.

ACM Transactions on Design Automation of Electronic Systems, Vol. 24, No. 1, Article 10. Pub. date: December 2018.

10:8 B.-Y. Huang et al.

Informally, a child-ILA steps through a sequence of child-instructions, where the sequencing is
implicitly determined by the state updates (using its state variables). That is, the child-instructions
are sequentially composed. This can be viewed as a child-program. For the AES example, the child-
program in Figure 2(a) models the START_ENCRYPT instruction, which comprises a loop and is
controlled by the states AesState and Counter, as illustrated in Figure 2(b).

3.2.1 Micro-Instructions and Sub-Instructions. Child-ILAs can be used to model specifications
or implemented algorithms. When modeling an implemented algorithm, their instructions serve
the same role as micro-instructions for complex instructions in processors, which represent one
possible implementation of that instruction. We distinguish this from instructions of child-ILAs
when used for specification, i.e., when they specify behavior that must hold for all implementa-
tions. In the latter case, we call them sub-instructions. For example, in REP MOVS, the steps of the
instruction are part of the specification, and thus, these sub-instructions are required of all imple-
mentations. Therefore, child-ILAs will be referred to as sub- or micro-ILAs depending on whether
they have sub- or micro-instructions, respectively.

The distinction between micro-instructions (implemented algorithm) and sub-instructions
(specifications) is important. For example, the ARM Cortex-M3 user guide [6] says that load-
multiple (LDM) and store-multiple instructions (STM) access memory “in order of increasing register
numbers.” Another shared memory interacting processor would expect to see this order. Further,
these instructions are interruptible, thus the intermediate values of the architectural states are vis-
ible to the interrupt handler. This order of accesses is therefore desired in the formal abstraction
when verifying systems with multiple interacting hardware components. However, while the user
guide only describes one particular implementation, the ARM architecture specification does not
impose this ordering requirement. This is reflected in the previous work on the ARM ISA for-
mal specification and verification [59]. While they state that “some load instructions may be split
into multiple micro-ops” and account for it by updating the architectural state when each micro-
op completes, when verifying this instruction they check the state only “when the last micro-op
completes.” We emphasize that it is important to treat these split accesses as micro-instructions

(i.e., as implemented algorithms) and not sub-instructions.
Due to the differing roles of specifications and implementations in verification, we impose some

restrictions on hierarchical ILAs. A sub-ILA may contain sub-ILAs or micro-ILAs. However, a
micro-ILA can only contain micro-ILAs, as an implementation cannot contain a specification.

3.2.2 Definition of Hierarchical ILAs. A hierarchical ILA A is defined as 〈S, I ,W ,V , F ,D,N ,C〉.
The new component C = {(Ac

1,m1), . . . } is a set of tuples consisting of child-ILAs and a Boolean
flag that denotes whether the particular child-ILA is a micro-ILA (mi = true) or a sub-ILA (mi =

false).
Figure 1(b) shows the ILA definitions for S , I , W , V , F , and the decode (δi) and state update

functions (Ni) for two of the instructions in the AES example. Figure 2(a) shows the definitions for
a child-ILA that models the START_ENCRYPT instruction.

3.3 ILA Execution Semantics

An ILA model is essentially a labeled state transition system that emphasizes modularity through
a set of instructions. The semantics of execution of an ILA instruction is as follows:

V (S,W) δi (F (S,W)) S ′ = Ni (S,W)

S
i� S ′

(1)

Rule (1) says that an ILA can transition from state S to S ′ if the following conditions are satisfied:

ACM Transactions on Design Automation of Electronic Systems, Vol. 24, No. 1, Article 10. Pub. date: December 2018.

Instruction-Level Abstraction for SoC Verification 10:9

—An instruction is triggered: V (S,W) is true .
—The i-th instruction is issued: δi (F (S,W)) is true .
—State update of the vector S ′ is according to Ni (S,W).

Execution of a child-instruction in a child-ILA is similar:

V c (Sc ,W c) δc
j

(F c (Sc ,W c)) S ′c = N c
j

(Sc ,W c)

Sc
j� S ′c

(2)

State updates in instructions at the lowest level of an ILA hierarchy are considered to be atomic,
i.e., indivisible. This enables reasoning about concurrency with multiple ILAs.

The focus of this article is on using an ILA to model the behavior of a single processor/accelerator
core using instructions. This is useful for capturing a sequential programming model for the core’s
operation as it processes a sequence of instructions. Although the hardware may operate on in-
structions in parallel (similar to pipelined processors), the programming abstraction for software
is that of a single sequential thread of control (similar to the ISA programming model). The value
of the ILA is that this sequential programming model is now extended uniformly from processors
to hardware accelerators. We believe this abstraction from parallel hardware in accelerators to a sin-

gle sequential programming model is a key enabler for system design and verification, and a central

contribution of the ILA methodology.

Further, once we have ILAs, each of which represents a single thread of control that updates
shared architectural state, we can use them to model a system of concurrent cores with shared
memory. Specifically, instructions are sequentially composed within an ILA, whereas concurrency
and interleaving models are handled outside of ILAs. Analogous to ISAs for processors, we can use
techniques for modeling multi-thread concurrency and memory consistency with multiple ILAs.
This is discussed briefly in Section 6.1 later—case studies and applications with concurrent cores
are outside the scope of this article.

4 CASE STUDIES: MODELING

In this section, we evaluate the ILA’s modeling abilities using four case studies: application-specific
accelerators for image processing, machine learning, and cryptography; and the Rocket processor
core based on the RISC-V ISA. With designs from different application domains, the ILA is shown
to be a uniform model usable across heterogeneous accelerators and processors. Verification for
these case studies is described in the next section.

We create the ILA for each design based either on an informal English specification or a high-
level reference model. These ILAs are synthesized using template-driven program synthesis [62],
or in some cases manually written in Python using our ILA library API. 2 Table 2 provides informa-
tion about each case study. Columns 2–5 give the reference model type, and sizes of the reference
model and RTL, respectively. The RTL descriptions are either generated by high-level synthesis or
taken from OpenCores.org. Columns 6 and 7 provide the number of instructions/child-instructions
in the ILA, and ILA size (in lines of Python code). We now discuss salient aspects of each case study.

4.1 Application-Specific Accelerators

We consider two types of accelerators: (i) those using local memory for computation and direct
memory access (DMA) to load/store data into their local memory buffers and (ii) those streaming
input and output data. The commands at the interface relate to (i) the interface protocol and (ii)
the computation tasks. In the AES example, the interface protocol refers to setting configurations

2All models and templates are available on GitHub: https://github.com/PrincetonUniversity/ILA-Modeling-Verification.

ACM Transactions on Design Automation of Electronic Systems, Vol. 24, No. 1, Article 10. Pub. date: December 2018.

https://github.com/PrincetonUniversity/ILA-Modeling-Verification

10:10 B.-Y. Huang et al.

Table 2. ILA Modeling Case Studies

Design Name
Design Statistics ILA

Reference Ref. Lang.
Ref.
Size

RTL
Size

of insts.
(parent/child)

ILA Size
(Python LoC)

RBM System-level design [55] SystemC 1,211† 10,578 3/14 1,009

GB (High-level) Halide description [56] C++ 288† 6,935 2/2 538

GB (Low-level) HLS input [56] C++ 1,718† 6,935 2/4 1561

AES (table) RTL simulator [38] C++ 1,905 1,105 8/5 435�

AES (logic) Software simulator [38] C 328 - 8/7 337�

RISC-V Rocket Chisel description [8] Chisel 3,488‡ 18,252 43 1,672�

�ILA synthesis template size. †Excluding shared library. ‡Processor core only.

and querying the status, and the computation task is the block encryption operation modeled in
the START_ENCRYPT instruction.

4.1.1 Restricted Boltzmann Machine. Restricted Boltzmann Machine (RBM) is a stochastic neu-
ral network commonly used in recommendation systems. We model the RBM accelerator from the
Columbia System Level Design Group [55]. It is implemented in SystemC and synthesized to Ver-
ilog. The accelerator supports both prediction and training, and uses the contrastive divergence
learning algorithm. It exchanges data with shared memory via DMA.

We manually constructed the ILA of the RBM accelerator. The ILA captures both the inter-
face protocol and the computation. It models the interface activities where the accelerator au-
tonomously initiates DMA transactions to load and store training/testing datasets after receiv-
ing an initial configuration. It contains three instructions, ConfDone, ReadGrant, and WriteGrant,
which set the configuration and grant DMA read and write transactions, respectively. The com-
plexity of computation and DMA interaction is managed by five child-ILAs for loading, storing,
coordination, training, and prediction, respectively, comprising a total of 14 child instructions.
The training and predicting child-ILAs, in turn, have child-ILAs that model their computation.
The computation iteratively updates two regions of private local memory for the hidden layer
and visible layer in a fixed order. This order is maintained by control registers in the implementa-
tion, using child-ILA states. Recall that child-ILA states are updated by a child instruction, which
activates the decode function of a subsequent child instruction.

This case study illustrates handling of both protocol and computation, the value of hierarchical
ILAs, and how order is captured by the state update and decode functions of the child-ILA.

4.1.2 Gaussian Blur. The image processing accelerator performing the Gaussian Blur (GB) op-
eration is from the Stanford VLSI Research Group [56]. Its behavior is described in Halide [57], a
domain-specific language for developing high-performance image processing applications. Halide
descriptions can be compiled into C++, which can then be synthesized to a Verilog implementa-
tion through high-level synthesis (HLS). The GB accelerator takes an image as streaming input,
and utilizes a two-dimensional line buffer to collect one part of the image at a time for the GB
kernel function computation. It then streams out the result for each part as soon as it is ready.

We manually construct two ILAs, GBH and GBL , from design descriptions at two different lev-
els. GBH is derived from the high-level Halide description, and models the specification. GBL is
derived from the lower-level C++ code compiled from the Halide description and models micro-
architectural details. GBH captures the size of input and output images, the streaming pattern
(row-major traversal), data source for the kernel function, and when the result is ready. GBH does

ACM Transactions on Design Automation of Electronic Systems, Vol. 24, No. 1, Article 10. Pub. date: December 2018.

Instruction-Level Abstraction for SoC Verification 10:11

not specify how streamed data is buffered, whereas GBL additionally includes a specific line buffer-

ing mechanism [56].
In this case study, we focus on specifying the streaming data interface and the output image

accumulation. The kernel computation is modeled as an uninterpreted function, a standard practice
in verification to allow decoupling of control verification from data-intensive computations that
can be verified separately. (This is supported by standard SMT solvers, described in Section 5.1.)
Both GBH and GBL have two instructions, WRITE and READ, that represent sending and receiving
a pixel to and from the I/O boundary, respectively. The two ILAs have the same instruction set,
i.e., the same hardware interface, but have different levels of abstraction. The extra complexity of
GBL in modeling the two-dimensional line buffer and stream buffers is captured by its child-ILAs;
child-instructions model data movement between different components.

This case study serves to illustrate the ability of the ILA to model (i) streaming I/O and (ii)
different levels of abstraction for the same instruction set through additional micro-architectural
detail.

4.1.3 Advanced Encryption Standard. This case study, introduced in Section 3, considers a cryp-
tographic engine from OpenCores [38] implementing the Advanced Encryption Standard (AES).
The accelerator receives configurations via memory-mapped I/O and uses DMA to exchange data
with shared memory. The configuration includes the encryption key, initial counter value, plain-
text location, and length, which are stored in registers mapped to the memory address space. This
accelerator works in AES-CTR mode [44], where the plaintext is fetched from the shared memory
starting from the location pointed to by the plaintext location. The accelerator operates in the fol-
lowing sequence: fetch one block from memory, apply exclusive-OR operation between plaintext
and the AES encrypted counter to get the ciphertext, and then store the block back into the same
location. Each block has 128 bits and the complete encryption operation has 10 rounds. The ILA
model uses child-ILAs for modeling the encryption function.

We synthesize two different ILAs using template-driven synthesis [62]. These ILAs, AESC and
AESV , are based on C and Verilog implementations, respectively. They have the same architectural
instruction set, but with differences in the block-level and round-level implementations in their
micro-instructions.

The instructions on the interface has been shown in Figure 1. Only START_ENCRYPT instruction
has child instructions, depicting block-level encryption. At the block level, AESV has more child
state variables (mostly counters and control signals), and its memory access is modeled at a finer
granularity than AESC . At the round level, there is one micro-instruction for each round. AESV

uses a table look-up, while AESC uses logical operations. We capture these differences in their
micro-ILAs. This case study illustrates the ability of the ILA to describe two different implemented
algorithms for the same set of instructions.

4.2 General-Purpose Processors

The ILA of a general-purpose processor is based on its ISA, and the ILA has the same instructions
and semantics. However, in contrast to existing formal ISA models (e.g., ISA-Formal [59]), our
model has a uniform treatment of interrupts (and possibly other input signals) and instructions,
rather than treating interrupts as a special case. Further, it supports hierarchy and distinguishes
sub-instructions from micro-instructions; this is missing in previous work.

4.2.1 RISC-V. RISC-V is a free and open ISA with increasing adoption in industry and academic
research. It has a base ISA with several extensions for advanced functionality. We synthesize the
ILA of the base integer ISA RV32I with the DefaultRV32Config of Rocket—a single-issue in-order
five-stage pipeline implementation (part of the Rocket Chip SoC generator) [8].

ACM Transactions on Design Automation of Electronic Systems, Vol. 24, No. 1, Article 10. Pub. date: December 2018.

10:12 B.-Y. Huang et al.

The ILA covers (1) user-level base integer registers and instructions, (2) machine-level control
status registers (CSRs), (3) environment call/trap return instructions, (4) the address translation and
the memory-management fence, and (5) interrupt and hardware interrupt handling. The semantics
of each instruction are as follows: if an interrupt occurs, the next state is updated as the result of
the interrupt. Otherwise, the state update is performed according to the instruction word. This
case study demonstrates modeling interrupts and instructions uniformly. The RISC-V ISA exposes
the synchronization between the memory hierarchy and the translation lookahead buffer (TLB)
through the SFENCE.VMA instruction. The lack of synchronization could result in stale page table
entry (PTE) references. The TLB in the RISC-V ISA is software visible, and we include it in our
ILA model as an architectural state variable. However, its size, associativity, and other parameters
are not specified by the ISA specification, so we model it as a ghost TLB, which can potentially
hold any PTE that has been referred to but has not been explicitly flushed out. As a 32-bit RISC-V
model, it only models the Sv32 virtual addressing in addition to Bare mode. Memory consistency
issues are beyond the scope of the current case study and thus not modeled. (Memory consistency
is briefly discussed in Section 6.1.)

4.3 Summary

From these case studies and the data in Table 2, we make the following observations:

—Accelerator ILAs tend to have a small number of instructions/child-instructions. That is,
most accelerators can be specified by just a handful of instructions.

—The same design can be modeled using ILAs at differing levels of detail. (In the next section
we show how these different models are checked for equivalence.)

—The ILA model (or template, when the ILA was synthesized) has size comparable to a ref-
erence design in C/SystemC/C++/Chisel. Thus, the value of its formal model comes at no
additional cost, in terms of the size of a reference description.

—The ILA model (or template) is significantly smaller than the final RTL implementation,
making this an attractive entry point for verification and validation.

5 CASE STUDIES: VERIFICATION

The ILA model can represent specifications or implementations of hardware modules. In this ar-
ticle, we focus on using ILAs for hardware verification to check that implementations of accel-
erators/processors match their ILA architectural specifications. This also enables checking that
different implementations of an accelerator have the same behavior at their interface specified by
an ILA, thereby proving their architecture-level equivalence.

We briefly touch on the underlying formal verification techniques, then discuss ILA-based ver-
ification, and finally describe their evaluation on our case studies.

5.1 Underlying Formal Verification Techniques

SMT solvers [17, 70] provide decision procedures for first-order logic formulas in background
theories, and have found numerous applications in verification. In this work, we use quantifier-
free formulas that use the theories of arrays, uninterpreted functions and bitvectors (QF_AUFBV in
the SMTLIB standard [11]).

Model checking is a verification technique to check correctness properties for a finite state
transition system [25, 48]. Unbounded model checking explores all reachable states of the transi-
tion system while bounded model checking (BMC) [15] restricts the search to all states reachable
within the first k transitions of the system. k is referred to as the bound and is typically set by the

ACM Transactions on Design Automation of Electronic Systems, Vol. 24, No. 1, Article 10. Pub. date: December 2018.

Instruction-Level Abstraction for SoC Verification 10:13

verification engineer. BMC alone cannot prove the absence of property violations; however, it is
very effective for bug finding in practice [26].3

5.2 ILA-Based Verification

As described in Section 3, the ILA model is a labeled state transition system, but one that empha-
sizes modularity and hierarchy. These features simplify verification through decomposition along
(child-)instructions and architectural state elements. We consider two main settings for ILA-based
verification: (i) ILA vs. ILA and (ii) ILA vs. FSM. The equivalence of these models is based on
bisimulation relations on the underlying labeled state transition systems [49]. (It is also straight-
forward to consider stuttering in addition, or extend our discussion to model refinement by using
simulation relations and containment checks instead.)

5.2.1 ILA vs. ILA Verification. As the GB and AES case studies described in Section 4.1 illus-
trate, we can construct ILAs for designs with differing implementations, or even at different levels
of abstraction. A natural application is to check these ILAs for equivalence. In this setting, we
compare two ILAs with the same instructions and sub-instructions, but with possibly different
micro-instructions in the implementation. For ILAs, instruction-based modularity provides the
basis for establishing correspondence between two models, i.e., we check that the behavior of the
ILAs is the same for each instruction and sub-instruction.

Consider first the case where we do not have micro-instructions (implementations) in the ILA
models. Given ILAs X and Y , we check that the issuing condition and the next-state transition
updates for each instruction and sub-instruction are equivalent in the two models. Specifically,
the equivalence for (sub-)instruction i is verified by checking

(i) equivalence of the valid function: ∀S,W .(V X (S,W) ↔ V Y (S,W));
(ii) equivalence of the decode function: ∀S,W .(δX

i (S,W) ↔ δY
i (S,W)); and

(iii) equivalence of state updates: ∀S,W .(δX
i (S,W) ∧ δY

i (S,W) → (NX
i (S,W) = NY

i (S,W))).

Note, X and Y are shown with the same state variables here, but this can be generalized to a
mapping between their variables.

Now consider the case where we have micro-instructions in the ILA model(s), to repre-
sent micro-architectural implementation choices. We do not enforce equivalence at the micro-
instruction level. Instead, we check the equivalence of each instruction and sub-instruction, where
each may be implemented using a sequence of micro-instructions. Here, we check equivalence after

the sequence of micro-instructions that implements an instruction/sub-instruction is completed.
To check the equivalence for each instruction, we may need additional abstraction/refinement

mappings to establish “corresponding” states between the two models. Thus, the equivalence check
essentially says that if we start in corresponding states and apply an instruction, then we end in
corresponding states. Here, we leverage well-studied processor verification techniques [19, 42] that
propose and use such mappings. In addition, we use invariants to prune some unreachable micro-
architectural states, such as the invalid combination of the horizontal/vertical frame pointers of
an image in the GB case study. These are often needed to prove the correspondence checks.

5.2.2 ILA vs. FSM Verification. In this setting, we are interested in verifying that a hardware
implementation available as an FSM model (e.g., RTL) corresponds to its ILA specification. As
before, the equivalence between an ILA model and an FSM model is checked for each instruction
and sub-instruction in the ILA. However, unlike the ILA that has a clear set of instructions, an

3The success of BMC is often ascribed to the “small world hypothesis”: bugs (inadvertent mistakes, as opposed to mali-

ciously introduced design flaws) are likely reachable through some short sequence of steps from the initial state.

ACM Transactions on Design Automation of Electronic Systems, Vol. 24, No. 1, Article 10. Pub. date: December 2018.

10:14 B.-Y. Huang et al.

Table 3. ILA Verification Experiments

Category Designs Models Tools Strength of Proof Time

ILA vs. ILA
GB GBH vs. GBL JasperGold complete 2h 27m

AES AESC vs. AESV ILA lib+JasperGold† complete 15m

ILA vs. FSM

GB
GBH vs. Verilog JasperGold complete 2h 50m

GBL vs. Verilog JasperGold complete 16h 12m

RBM
ILA vs. SystemC CBMC complete 2h 7m

ILA vs. Verilog JasperGold complete 6h 54m

RISC-V

Rocket
ILA vs. Verilog JasperGold

complete (invariants) 5h 40m

complete (interrupt) 8m

BMC to 40 cycles (instructions) 86h 5m

†ILA library (using Z3) for block-level ILA equivalence, JasperGold for round-level equivalence.

FSM model is generally a monolithic transition system without a separation between the parts
implementing different instructions/sub-instructions.

Again, we leverage well-studied processor verification techniques [19, 42], and use refinement
mappings to relate the FSM states to the ILA states for each (sub-)instruction. Invariants are also
used to prune unreachable micro-architectural states in the FSM model, e.g., the invariant on a
one-hot encoded counter in the RTL implementation.

Note that ILAs enable a discipline for accelerator implementation verification that is based on estab-

lished methodology for processor verification. This is in contrast to customizing general hardware
verification techniques for this task, since determining what/when to check is itself a challenge
and in practice woefully incomplete.

5.3 Experimental Evaluation

We have implemented the ILA-based verification techniques described above, on top of off-the-
shelf verification tools (Z3 [30], JasperGold [20], and CBMC [24]). The correspondence checks on
instructions are expressed as verifying the assertions where the two models end in correspond-
ing states, given the assumptions that they start in corresponding states and apply the same in-
struction. For example, for the Gaussian-Blur accelerator, we check the correspondence of frame
pointers by assuming the two models initially have an equal horizontal/vertical frame pointer
pair. Then, we verify that their frame pointers are equal after the WRITE instruction, regardless of
the pixel accumulating and buffering mechanism. Our ILA library supports translation of the ILA
models into formats supported by these tools. Verification results are summarized in Table 3.

5.3.1 ILA vs. ILA Verification.

GB Accelerator: Recall that we constructed two ILAs (see Section 4.1) for the GB accelerator.
The ILA GBH follows the high-level Halide code, and GBL follows the lower-level C++ code. The
two ILAs have the same instruction set, but GBL has additional micro-instructions to describe
stream buffer and pixel accumulation operations. We check equivalence of each instruction using
the Burch-Dill approach [19], where we use a “flushing” function to relate corresponding states
in the two ILAs. This is needed to abstract away intermediate micro-architectural states in GBL

that are not visible in GBH . Specifically, the checked instruction starts in a state in GBL where
there is no buffered intermediate data. Thus, for each instruction, we check that the architectural
states (IO ports, image frame, pixel pointers, etc.) are equal at the end, whenever the ILAs start in
corresponding initial states. Verification completed in about 2.5 hours using JasperGold.

ACM Transactions on Design Automation of Electronic Systems, Vol. 24, No. 1, Article 10. Pub. date: December 2018.

Instruction-Level Abstraction for SoC Verification 10:15

AES Accelerators: The two ILAs of the AES accelerator were described in Section 4.1. They have
the same instructions at the top level, but different micro-instructions due to different implementa-
tions of the encryption algorithm. We leveraged the hierarchy in ILA models to decompose equiv-
alence checking into block-level and round-level equivalence checks.

The AES encryption is a 10-round operation. As both models have one micro-instruction for
each round, we first check the equivalence of such micro-instructions. At the round level, we
check that the generated round keys and ciphertexts are matched after the execution, given their
round keys and cipherstates are matched before the execution. The micro-instructions and the
verification conditions for checking are automatically converted into Verilog to take advantage
of hardware verification tools, which are better at reasoning logic operations in AES encryption.
Based on the equivalence of round-level micro-instructions, we check the equivalence of the 10-
round AES operation by modeling the round-level encryption as an uninterpreted function.

The block-level operations involve fetching plaintext, encrypting data, storing ciphertext, and
maintaining encryption states, e.g., the counter. We check that after processing one block, the two
models should have the same ending state (including shared memory and registers in the accelera-
tor) if they start from the same state. By proving the equivalence of the micro-instructions perform-
ing block-level operations, the equivalence of START_ENCRYPT instruction, which processes series
of blocks, can be guaranteed. We used our ILA library, which in turn uses the Z3 SMT solver [30],
for checking block-level equivalence, and use JasperGold for checking round-level equivalence.
The total verification time was about 15 minutes.

These two case studies show that ILA equivalence checking can be applied to bridge the gap
between models at different abstraction levels associated with design languages (Halide vs. C++,
C vs. Verilog).

5.3.2 ILA vs. FSM Verification. We consider FSM models at the register transfer level (e.g., in
Verilog) or system level (e.g., in C/SystemC). We check ILA vs. FSM equivalence for two accel-
erators and a general-purpose processor. All FSM models are provided independently by other
groups, and not synthesized from ILAs: RBM-SystemC model by the Carloni-Columbia group [55];
Gaussian-Blur-Halide/C++ model by the Horowitz-Stanford group [56]; AES-C/RTL implementa-
tion from OpenCores.org [38]; RISC-V implementation from Berkeley’s Rocket-chip generator [8].
Our previous work [62, 64] has discussed the verification of the 8051 micro-controller and SHA
accelerator, where eight bugs were found in the RTL model in 8,051.

GB Accelerator: We performed equivalence checking between the RTL implementation (generated
by HLS) and each of the two ILAs, GBH and GBL , separately. GBL models more detailed behavior
such as buffering and pixel accumulation, which is similar to the RTL implementation. We provided
invariants to establish corresponding states, and successfully completed verification against each
ILA model. As expected, the verification of RTL against the more detailed GBL took more time
than against GBH (≈16h vs. 3 h).

Restricted Boltzmann Machine: We exploited the structural similarity between SystemC, Ver-
ilog, and the ILA models to expedite equivalence checking through modular checking. We replaced
some functions in the computation, e.g., the sigmoid function, with uninterpreted functions. (Veri-
fication of these functions can be addressed separately.) We successfully completed verification of
the ILA vs. SystemC (≈2h), as well as the ILA vs. Verilog (≈7h). This example demonstrates that a
single ILA can be matched against multiple FSM models with implementation-specific differences.

ILA for RV32I vs. Rocket: We synthesized the ILA for the RISC-V specification and verified this
against Verilog of the Rocket processor core generated from a Chisel description [8]. The verifica-
tion settings can be found in directory RISC-V/ILAVerif in our GitHub repository. Our focus was

ACM Transactions on Design Automation of Electronic Systems, Vol. 24, No. 1, Article 10. Pub. date: December 2018.

10:16 B.-Y. Huang et al.

Fig. 3. ILA vs. FSM verification of instruction execution in Rocket.

on the processor core, and we separate it from the memory system and the branch predictor. We
abstract the branch predictor by constraining the interface of the processor core where any valid
prediction can arrive in any cycle.

Our verification had three main steps.

(1) First, as discussed in Section 5.2.2, we use implementation invariants to prune unreachable
states in per-instruction equivalence checking. The first category of invariants targets the
correctness of the bypassing network. That is, for each general-purpose register, the value
bypassed to the decode stage must be the same as the corresponding when the instruction
at that stage commits. The second category ensures the multiplication/division unit and
co-processors do not generate valid response signals when executing integer instructions.
These invariants are verified using the unbounded model checking engines of JasperGold.

(2) Next, we verified interrupt handling. The RTL handles interrupts by inserting dummy
instructions in the pipeline, corresponding to the interrupt instruction in the ILA. We
proved that RTL and ILA states match when the interrupt commits (using JasperGold).

(3) Finally, we checked equivalence on ordinary instructions using the inductive proof strat-
egy shown in Figure 3. The processor is started in an arbitrary state s constrained by the
invariants described in Step (1). Five4 instructions are issued, leading to a state s1 where
we assume that they have been correctly committed, i.e., the ILA state σ1 and RTL state
s1 are equal. Then, a new instruction IV is issued, and we check whether ILA state σ2 and
RTL state s2 match when IV commits. We were unable to complete an unbounded proof
of this property. However, except for the bug discussed below, there was no violation up
to a bound of 40 cycles using BMC (from s to s2).

Note that the latency of an instruction depends on the response latency from modules
like the data cache. Therefore, it is possible that 40 cycles are not sufficient to guarantee

that IV commits correctly. Future work will build a memory model that can prove full
correctness to avoid this limitation.

The two main challenges in verifying the Rocket core are finding a sufficiently strong set of
invariants so that the inductive proof (Step (3)) above succeeds and specifying the refinement
relation.

Deriving Pipeline Invariants for Rocket Verification: We derived the “strengthening” invariants us-
ing a counter-example guided approach. Initially, we attempted the inductive check for instruc-
tion equivalence starting with an unconstrained state (i.e., no invariants). This resulted in spurious
counter-examples where the inductive proof failed when starting from unreachable states. Analy-
sis of these states helped us formulate the set of invariants described in Step (1). These invariants
were checked using the unbounded model checking and then used to constrain the starting state

4In our experiments, five instructions led to an over-approximation of the reachable states that is “strong” enough to prove

equivalence.

ACM Transactions on Design Automation of Electronic Systems, Vol. 24, No. 1, Article 10. Pub. date: December 2018.

Instruction-Level Abstraction for SoC Verification 10:17

Fig. 4. The compound transition system used in ILA vs. Rocket processor core equivalence checking.

for the inductive proof described in Step (3) above. The base case of the inductive proof: ensuring
that five instructions commit correctly starting from the reset state was verified separately.

Deriving Refinement Relations for Rocket Verification: As discussed in Section 5.2, the equivalence
in Figure 3 is defined with respect to refinement, which consists of a mapping between the states
in Rocket implementation and our ILA model. The states here involve general-purpose registers,
CSRs, the program counter, and memory. The refinement relations for each of these state variables
are as follows:

(1) General-purpose registers and CSRs: This refinement relation specifies that the register
values in the ILA model and the Rocket implementation must be equal after each instruc-
tion commits.

(2) Program counter: The program counter’s refinement relation is a little trickier due to
branch prediction and speculative execution. In the Rocket implementation, every pipeline
stage except the fetch stage possesses a program counter variable corresponding to the
current instruction in that stage. The refinement relation for the PC specifies that the
program counter value of the commit stage of the Rocket implementation and the corre-
sponding program counter value in the ILA model should be equal after each instruction
commits.

(3) Memory: Instead of modeling two individual memories and checking value equivalence
over all addresses, we use a shared memory for all memory read operations, and store
all the memory write operations separately for comparison. Equivalence requires that
the changes to memory should be the same when IV commits. We abstract the memory
for read operations by returning arbitrary values for irrelevant read requests, and only
enforcing the equivalence on the requests from IV .

To track the stages where current instruction IV resides, we use a sequence monitor to store the
corresponding stages and use these in specifying the refinement relations.

The compound transition system in Figure 4 shows how we show that the Rocket implementa-
tion refines the ILA model. This compound transition system has more than 4k bits of flip-flops and
320k gates (reported by JasperGold). JasperGold uses both bounded and ubounded model checking
techniques on this transition system and any trace violating the refinement relations indicates the
two models are not equivalent.

Rocket Implementation Bug: We found a bug where the Rocket core incorrectly implements
the trap return instructions. According to the specification [69] these instructions should set the
xPIE bits in mstatus register to 1. However, the implementation sets them to 0. We reported this
bug, and it has been fixed since. This case study illustrates the usefulness of our approach on real
processors.

ACM Transactions on Design Automation of Electronic Systems, Vol. 24, No. 1, Article 10. Pub. date: December 2018.

10:18 B.-Y. Huang et al.

5.4 Summary of Verification Experiments

From Table 3, we observe that most verification experiments can derive a complete proof where
“complete” refers to either unbounded proofs, or running BMC to the upper bounds of the instruc-
tions’ latencies. Instructions on the Rocket core are checked up to a bound of 40 cycles, which is
incomplete, but does provide a significant level of assurance.

Overall, our evaluation confirms the viability of equivalence checking using ILAs, where we
leverage the ILA modularity and hierarchy on top of existing verification tools and processor veri-
fication methodology, to successfully verify a range of accelerators and processors. Our case stud-
ies cover the verification of computation (AES and RBM) as well as processor/accelerator interfaces
(GB and RBM), which is important for accelerator verification.

6 DISCUSSION AND FUTURE WORK

While this article focuses on the application of the ILA model in verification of a single compute
engine (processor or accelerator), the ILA has other applications as discussed below.

6.1 Modeling Concurrency and Memory Consistency

The ILA model views compute engines (processors and accelerators) as processing a sequence
of instructions. Although the underlying hardware may operate on these instructions in parallel
(similar to pipelined microarchitectures for processors), the programming abstraction it provides
is that of a single sequential thread of control (similar to the ISA-based programming model).

As a next step, we believe that individual ILA models can be composed to perform reasoning
over a concurrent system of multiple accelerator/processor cores. Here, the large body of work on
concurrent programs and multiprocessor systems can be leveraged, and potentially extended to
accelerator-rich systems using ILAs. One natural application is to use concurrent program verifica-
tion techniques for checking correctness properties at the system level. This would include use of
well-known methods and tools, such as software model checking with partial order reduction [25,
37] and compositional frameworks for thread-modular reasoning [33, 52].

Another promising application is in verification of memory consistency models, which capture
rules about operations on shared memory. The ISA plays a central role in many efforts related
to verification of memory consistency—correctness of compiler mappings for higher-level lan-
guages [12, 13], correctness of microarchitecture implementations (including coherence and vir-
tual memory subsystems) with respect to ISA and microarchitecture specifications [46, 47], and
more recently at the trisection of software, hardware, and ISA [66]. Furthermore, there have been
recent advances in automatic methods for verification [2] and synthesis [18] of axiomatic memory
models.

Note that these techniques and tools are not currently directly applicable to accelerators, where
the hardware is described with low-level FSM models (e.g., RTL Verilog). More importantly, since
the accelerator memory operations are generally not visible to the processor, ignoring these in-
teractions with shared memory can have adverse consequences for checking correctness or se-
curity of the overall system. Modeling accelerator behavior as an ILA allows application (and
potential extensions) of these known ISA-based techniques. We are currently working on mem-
ory consistency modeling for a general shared memory system with multiple processors and
accelerators.

Admittedly, this approach does not yet address the challenging issues that currently pervade
memory consistency verification using ISAs. However, it allows some separation of concerns,
whereby good solutions for ISAs can be adapted for ILAs to extend their reach to accelerators.

ACM Transactions on Design Automation of Electronic Systems, Vol. 24, No. 1, Article 10. Pub. date: December 2018.

Instruction-Level Abstraction for SoC Verification 10:19

6.2 Accelerator Code Generation

Accelerators provide efficient hardware implementations of functions that can be offloaded from
programmable processors. When accelerators are deployed, an important and error-prone task is
to program the accelerator to invoke these functions. As discussed in Section 1, the processor-
accelerator interactions often useMMIO. Even when a single ILA instruction implements a sig-
nificant function (e.g., block encryption in the AES accelerator example), other instructions must
precede this encryption instruction to set up the encryption key, address of the block, size of the
block, and so forth. Thus, a sequence of instructions is needed to completely implement this func-
tion. This sequence is often referred to as the accelerator driver code and is typically provided as
library code with the accelerator. For this code to be correct—the instructions that set up the accel-
erator must be correct, as must the main accelerator function itself. The ILA model enables correct
code synthesis using well-known program synthesis techniques (e.g., [3, 41]). In this setup, pro-
gram synthesis seeks a program with k ILA instructions that is equivalent to the software function
f it is replacing. Function f serves as an oracle to guide the search, and the ILA model provides
the accelerator instruction semantics for use in the SMT solver based search for the program with
k-instructions. While this has not yet been implemented, the fact that these driver programs are
short (i.e., k is small) suggests promise for this useful application of the ILA model.

6.3 Reliable Simulator Generation

Given an ILA model, a reliable hardware simulator can be automatically generated for use in
system/software development. The ILA model specifies the state update functions of the architec-
tural state variables. Through hierarchy, it may optionally provide additional micro-architectural
detail. These functions can be used to construct an executable model (i.e. a simulator) in almost
any programming language (we currently use C++). As this simulator is generated from a formal
specification that can be verified against the detailed RTL hardware model, this makes it a reliable

executable model.
Mismatches between a simulator and the hardware it models is a common problem for software

(especially OS) developers. This problem can be addressed through generation of reliable simula-
tors. As an illustrative example, we note that a previous version of the seL4 RISC-V port makes
no use of the supervisor memory-management fence (SFENCE.VMA) instruction, but still executes
correctly on the spike ISA simulator. The simulator flushes the translation look-ahead buffer more
frequently than either the Rocket implementation or the RISC-V specification’s minimum require-
ment.

We checked if the missing fence instruction would cause a problem. We removed the gratu-
itous TLB flushes in the simulator and embedded an address translation monitor to check whether
any address translation uses a stale page table entry. The OS crashed on this modified simula-
tor, and stale page table references were observed. This illustrates that the missing SFENCE.VMA
could crash on a seL4 RISC-V port with a hardware implementation that conforms only to the
minimum requirement in the specification. This mismatched behavior between the simulator and
the hardware would be a problem if the OS were later ported to run on real hardware. Although
the missing fence instruction has been added by the seL4 developers in a newer release, the sim-
ulator behavior of gratuitous TLB flushes has not been changed. The RISC-V community knows
that the spike ISA simulator represents only one possible implementation of RISC-V, and that
this might be different from a hardware implementation. However, we believe that it is useful
to have an ISA-level simulator that represents the specification or matches a specific hardware
implementation, so that software developers can be more confident about test results with the
simulator.

ACM Transactions on Design Automation of Electronic Systems, Vol. 24, No. 1, Article 10. Pub. date: December 2018.

10:20 B.-Y. Huang et al.

7 RELATED WORK

To the best of our knowledge, this is the first work to formally model accelerator interfaces using
the notion of instructions similar to ISAs for processors. Our previous work in [62, 64] did intro-
duce the notion of instructions as accelerator abstractions, but did not provide a formal model of
execution. Instead, its focus was on template-based synthesis of these abstractions. Further, these
abstractions were defined as finite state transition systems, with no notion of hierarchy and no
applicability to processors. In this work, we introduce the formal ILA model, with hierarchy (sub-
and micro-instructions), that can be used uniformly across processors and accelerators. In addi-
tion, we provide an extensive evaluation of its modeling and verification capabilities on a diverse
set of accelerator and processor designs. Past work [63] has also shown how abstractions can be
used for hardware/software co-verification. In contrast, the focus of this article is on verification
of hardware implementations against ILA specifications.

Formal machine-readable and precise specifications [32, 58] of ARM and x86 processors
have been developed. ISA-Formal [59] is a framework aimed at verification of ARM proces-
sors against ISA specifications [58]. However, as discussed earlier, this does not distinguish
between different forms of hierarchy (sub-instructions vs. micro-instructions) needed for cor-
rect verification. Further, interrupts require special handling in their instruction semantics.
Others [19, 42] have targeted verification of processor microarchitecture w.r.t. the ISA. These
works target general-purpose processors and do not address verification of accelerators. As dis-
cussed, we build on these techniques for verifying accelerator implementations against their ILA
specifications.

As discussed in Section 2, many efforts over the years have proposed the use of high-level models
in design and verification. These include StateCharts, SystemC, Esterel, Transaction Level Model-
ing (TLM), BlueSpec, and others [9, 14, 34, 36, 53]. In particular, BlueSpec has been used as a high-
level specification and design language in industry and research [7, 51]. It models hardware compo-
nents as atomic rules of state transition systems and enables easy exploration of microarchitectural
design space, e.g., adding a buffer in a pipeline. The commercial BlueSpec compiler synthesizes the
circuit implementation, i.e., Verilog, and exploits parallelism with a scheduler determining how to
interleave the atomic rules [28, 36]. BlueSpec has a well-defined operational semantics and sup-
ports modular verification using SMT solvers [29] and interactive-theorem provers [23, 67]. While
the use of high-level models helps raise the level of abstraction, and hence improves scalability
in design and verification, all of these models including BlueSpec lack two essential ILA features:
a clean separation between hardware and software concerns, and uniform instruction-level treat-
ment of processors and accelerators. This limits their use in hardware/software co-verification and
scalable verification of systems with heterogeneous hardware components.

A number of hardware/software co-synthesis frameworks [21, 50, 54, 65] attempt to auto-
matically generate both firmware and accelerator hardware from an algorithmic description.
While these efforts may side-step the need for abstractions for co-verification through correct-by-
construction claims, reasoning about their correctness will itself require a principled abstraction
of hardware with the key ILA features stated above.

Property validation of hardware over Verilog/VHDL models has been advancing since the adop-
tion of novel model checking techniques, e.g., [40, 43, 68]. These works are orthogonal to our work.
Our key contribution is using ILA as a functional specification of processors/accelerators, and en-
abling the use of existing processor verification techniques for accelerator verification. The ver-
ification problem is to check equivalence of instruction-level vs. RTL models, and not validating
individual properties in Verilog/VHDL models, which would otherwise need to be specified for
capturing full functionality.

ACM Transactions on Design Automation of Electronic Systems, Vol. 24, No. 1, Article 10. Pub. date: December 2018.

Instruction-Level Abstraction for SoC Verification 10:21

8 CONCLUSIONS

This article presents the ILA as a formal model for accelerators to address the heterogeneity chal-
lenges of emerging computing platforms. The ILA is a uniform model, usable across heteroge-
neous processors and accelerators. Further, it raises the level of abstraction of the accelerators
to that of the processors, enabling formal software-hardware co-verification. The ILA has sev-
eral valuable attributes for modeling and verification. It is modular, with functionality expressed
as a set of instructions. It enables meaningful abstraction through architectural state that is per-
sistent across instructions. It provides for portability through a more durable interface with the
interacting processors. It is hierarchical, providing for multiple levels of abstraction for modeling
complex instructions as a software program through sub- and micro-instructions. It enables lever-
aging processor verification techniques for verifying accelerator implementations. This allows for
accelerator replacement using the notion of ILA compatibility similar to that of ISA compatibility.

We demonstrate the value of these attributes through modeling and verification of a range of
accelerators (RBM, AES, and Gaussian Blur) and a processor (RISC-V Rocket processor core). We
identify modeling gaps in previous formal modeling of ISAs (ISA Formal’s lack of distinction be-
tween hierarchy in specification vs. implementation) and a bug in the implementation of the RISC-
V Rocket core. Further, we demonstrate substantially complete model checking based verification
for our case studies. Regarding scalability, our verification for accelerators from OpenCores (AES)
and processors (Rocket Chip) are the targets over the next 4 years in the current DARPA POSH
BAA. Finally, we highlight additional applications of the ILA model in reasoning about concur-
rency and memory consistency with accelerators, accelerator code generation, and reliable simu-
lator generation. Overall, these results and contributions provide significant evidence of the value
of ILAs in accelerator-based modeling and verification.

REFERENCES

[1] Samar Abdi and Daniel Gajski. 2006. Verification of system level model transformations. International Journal of

Parallel Programming 34, 1 (2006), 29–59. DOI:https://doi.org/10.1007/s10766-005-0001-y

[2] Jade Alglave and Michael Tautschnig. 2014. Herding cats: Modelling, simulation, testing, and data-mining for weak

memory. ACM Transactions on Programming Languages and Systems 36, 2 (2014), 7:1–7:74. DOI:https://doi.org/10.

1145/2627752

[3] Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo M. K. Martin, Mukund Raghothaman, Sanjit A. Seshia, Rishabh

Singh, Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa. 2013. Syntax-guided synthesis. In Proceedings of

the Conference on Formal Methods in Computer-Aided Design. 1–8. DOI:https://doi.org/10.1109/FMCAD.2013.6679385

[4] Rajeev Alur and Radu Grosu. 2000. Modular refinement of hierarchic reactive machines. In Proceedings of the Sym-

posium on Principles of Programming Language. 390–402. DOI:https://doi.org/10.1145/973097.973101

[5] Ehsan K. Ardestani and Jose Renau. 2013. ESESC: A fast multicore simulator using time-based sampling. In Proceedings

of the International Symposium on High-Performance Computer Architecture. 448–459. DOI:https://doi.org/10.1109/

HPCA.2013.6522340

[6] ARM Ltd. 2010. Cortex-M3 Devices Generic User Guide. Retrieved November 11, 2017 from http://infocenter.arm.

com/help/index.jsp?topic=/com.arm.doc.dui0552a/BABCAEDD.html.

[7] Arvind and Xiaowei Shen. 1999. Using term rewriting systems to design and verify processors. IEEE Micro 19, 3 (May

1999), 36–46. DOI:https://doi.org/10.1109/40.768501

[8] Krste Asanović, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David Biancolin, Christopher Celio, Henry Cook,

Daniel Dabbelt, John Hauser, Adam Izraelevitz, Sagar Karandikar, Ben Keller, Donggyu Kim, John Koenig, Yunsup

Lee, Eric Love, Martin Maas, Albert Magyar, Howard Mao, Miquel Moreto, Albert Ou, David A. Patterson, Brian

Richards, Colin Schmidt, Stephen Twigg, Huy Vo, and Andrew Waterman. 2016. The Rocket Chip Generator. Technical

Report UCB/EECS-2016-17. EECS Department, University of California, Berkeley. http://www2.eecs.berkeley.edu/

Pubs/TechRpts/2016/EECS-2016-17.html

[9] Francine Bacchini, Daniel D. Gajski, Laurent Maillet-Contoz, Haruhisa Kashiwagi, Jack Donovan, Tommi Makelainen,

Jack Greenbaum, and R. S. Nikhil. 2007. TLM: Crossing over from buzz to adoption. In Proceedings of Design Automa-

tion Conference. 444–445. DOI:https://doi.org/10.1109/DAC.2007.375205

ACM Transactions on Design Automation of Electronic Systems, Vol. 24, No. 1, Article 10. Pub. date: December 2018.

https://doi.org/10.1007/s10766-005-0001-y
https://doi.org/10.1145/2627752
https://doi.org/10.1145/2627752
https://doi.org/10.1109/FMCAD.2013.6679385
https://doi.org/10.1145/973097.973101
https://doi.org/10.1109/HPCA.2013.6522340
https://doi.org/10.1109/HPCA.2013.6522340
http://infocenter.arm.com/help/index.jsp?topic$=$/com.arm.doc.dui0552a/BABCAEDD.html
http://infocenter.arm.com/help/index.jsp?topic$=$/com.arm.doc.dui0552a/BABCAEDD.html
https://doi.org/10.1109/40.768501
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
https://doi.org/10.1109/DAC.2007.375205

10:22 B.-Y. Huang et al.

[10] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman, Rimas Avižienis, John Wawrzynek,

and Krste Asanović. 2012. Chisel: Constructing hardware in a scala embedded language. In Proceedings of Design

Automation Conference. 1212–1221. DOI:https://doi.org/10.1145/2228360.2228584

[11] Clark Barrett, Aaron Stump, and Cesare Tinelli. 2010. The SMT-LIB standard version 2.0. In Proceedings of the Inter-

national Workshop on Satisfiability Modulo Theories. 14–112.

[12] Mark Batty, Kayvan Memarian, Scott Owens, and Susmit Sarkar. 2012. Clarifying and compiling C/C++ concurrency:

From C++ 11 to POWER. In Proceedings of the Annual Symposium on Principles of Programming Languages. ACM,

New York, 509–520. DOI:https://doi.org/10.1145/2103656.2103717

[13] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. 2011. Mathematizing C++ concurrency. In

Proceedings of the Annual Symposium on Principles of Programming Languages. 55–66. DOI:https://doi.org/10.1145/

1925844.1926394

[14] G. Berry, M. Kishinevsky, and S. Singh. 2003. System level design and verification using a synchronous language. In

Proceedings of the International Conference on Computer-Aided Design. 433–439. DOI:https://doi.org/10.1109/ICCAD.

2003.1257813

[15] Armin Biere, Alessandro Cimatti, and Edmund M Clarke. 2003. Bounded model checking. Advances in Computers 58

(2003), 117–148.

[16] Nathan Binkert, Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D. Hill, David

A. Wood, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek

R. Hower, and Tushar Krishna. 2011. The gem5 simulator. ACM SIGARCH Computer Architecture News 39, 2 (2011),

1–7. DOI:https://doi.org/10.1145/2024716.2024718

[17] Nikolaj Bjorner and Leonardo De Moura. 2011. Satisfiability modulo theories: Introduction and applications. Com-

munications of the ACM 54, 9 (2011), 69–77. DOI:https://doi.org/10.1145/1995376

[18] James Bornholt and Emina Torlak. 2017. Synthesizing memory models from framework sketches and litmus tests. In

Proceedings of the Conference on Programming Language Design and Implementation. 467–481. DOI:https://doi.org/10.

1145/3062341.3062353

[19] Jerry R. Burch and David L. Dill. 1994. Automated verification of pipelined microprocessor control. In Proceedings of

the International Conference on Computer Aided Verification. 68–84. https://dl.acm.org/citation.cfm?id=735662

[20] Cadence Design Systems, Inc. 2018. JasperGold: Formal Property Verification App. Retrieved January 2, 2018 from

http://www.jasper-da.com/products/jaspergold-apps/.

[21] Andrew Canis, Jongsok Choi, Mark Aldham, and Victor Zhang. 2013. LegUp: An open-source high-level synthesis

tool for FPGA-Based processor/accelerator systems. ACM Transactions on Embedded Computing Systems 13, 2 (2013),

24:1–24:27. DOI:https://doi.org/10.1145/2514740

[22] Wei Ting Jonas Chan, Andrew B. Kahng, Siddhartha Nath, and Ichiro Yamamoto. 2014. The ITRS MPU and SoC

system drivers: Calibration and implications for design-based equivalent scaling in the roadmap. In Proceedings of

the International Conference on Computer Design. 153–160. DOI:https://doi.org/10.1109/ICCD.2014.6974675

[23] Joonwon Choi, Muralidaran Vijayaraghavan, Benjamin Sherman, and Adam Chlipala. 2017. Kami: A platform for

high-level parametric hardware specification and its modular verification. Proceedings of the ACM on Programming

Languages 1, 24 (2017). DOI:https://doi.org/10.1145/3110268

[24] Edmund Clarke, Daniel Kroening, and Flavio Lerda. 2004. CBMC - A tool for checking ANSI-C programs. In Proceed-

ings of the International Conference on Tools and Algorithms for the Construction and Analysis of Systems, Vol. 2988.

168–176. DOI:https://doi.org/10.1007/978-3-540-24730-2_15

[25] Edmund M. Clarke, Orna Grumberg, and Doron Peled. 1999. Model Checking. MIT Press.

[26] Fady Copty, Limor Fix, Ranan Fraer, Enrico Giunchiglia, Gila Kamhi, Armando Tacchella, and Moshe Y. Vardi. 2001.

Benefits of bounded model checking at an industrial setting. In Proceedings of the International Conference on Computer

Aided Verification. 436–453. DOI:https://doi.org/10.1007/3-540-44585-4_43

[27] Emilio G. Cota, Paolo Mantovani, Giuseppe Di Guglielmo, and Luca P. Carloni. 2015. An analysis of accelerator

coupling in heterogeneous architectures. In Proceedings of Design Automation Conference. 202:1–202:6. DOI:https://

doi.org/10.1145/2744769.2744794

[28] Nirav Dave, Arvind, and Michael Pellauer. 2007. Scheduling as rule composition. In Proceedings of the IEEE/ACM Inter-

national Conference on Formal Methods and Models for Codesign. IEEE, 51–60. DOI:https://doi.org/10.1109/MEMCOD.

2007.371249

[29] Nirav Dave, Michael Katelman, Myron King, Jose Arvind, and Jose Meseguer. 2011. Verification of microarchitectural

refinements in rule-based systems. In Proceedings of the ACM/IEEE International Conference on Formal Methods and

Models for Codesign. IEEE, 61–71. DOI:https://doi.org/10.1109/MEMCOD.2011.5970511

[30] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In Proceedings of the International Con-

ference on Tools and Algorithms for the Construction and Analysis of Systems. 337–340. DOI:https://doi.org/10.1007/

978-3-540-78800-3_24

ACM Transactions on Design Automation of Electronic Systems, Vol. 24, No. 1, Article 10. Pub. date: December 2018.

https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1145/2103656.2103717
https://doi.org/10.1145/1925844.1926394
https://doi.org/10.1145/1925844.1926394
https://doi.org/10.1109/ICCAD.2003.1257813
https://doi.org/10.1109/ICCAD.2003.1257813
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/1995376
https://doi.org/10.1145/3062341.3062353
https://doi.org/10.1145/3062341.3062353
https://dl.acm.org/citation.cfm?id=735662
http://www.jasper-da.com/products/jaspergold-apps/
https://doi.org/10.1145/2514740
https://doi.org/10.1109/ICCD.2014.6974675
https://doi.org/10.1145/3110268
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/3-540-44585-4_43
https://doi.org/10.1145/2744769.2744794
https://doi.org/10.1145/2744769.2744794
https://doi.org/10.1109/MEMCOD.2007.371249
https://doi.org/10.1109/MEMCOD.2007.371249
https://doi.org/10.1109/MEMCOD.2011.5970511
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24

Instruction-Level Abstraction for SoC Verification 10:23

[31] Rainer Dömer, Andreas Gerstlauer, Junyu Peng, Dongwan Shin, Lukai Cai, Haobo Yu, Samar Abdi, and Daniel D.

Gajski. 2008. System-on-chip environment: A SpecC-based framework for heterogeneous MPSoC design. EURASIP

Journal on Embedded Systems (2008), 5:1–5:13. DOI:https://doi.org/10.1155/2008/647953

[32] Shilpi Goel, Warren A. Hunt, Matt Kaufmann, and Soumava Ghosh. 2014. Simulation and formal verification of x86

machine-code programs that make system calls. In Proceedings of the International Conference on Formal Methods in

Computer-Aided Design. 91–98. DOI:https://doi.org/10.1109/FMCAD.2014.6987600

[33] Ashutosh Gupta, Corneliu Popeea, and Andrey Rybalchenko. 2011. Threader: A constraint-based verifier for multi-

threaded programs. In Proceedings of the International Conference on Computer Aided Verification. 412–417. DOI:
https://doi.org/10.1007/978-3-642-22110-1_32

[34] David Harel and Amnon Naamad. 1996. The STATEMATE semantics of statecharts. ACM Transactions on Software

Engineering and Methodology 5, 4 (1996), 293–333. DOI:https://doi.org/10.1145/235321.235322

[35] Paula Herber and Sabine Glesner. 2013. A HW/SW co-verification framework for systemC. ACM Transactions on

Embedded Computing Systems 12, 1 (2013), 61:1–61:23. DOI:https://doi.org/10.1145/2435227.2435257

[36] James C. Hoe and Arvind. 2000. Synthesis of operation-centric hardware descriptions. In Proceedings of the Interna-

tional Conference on Computer-Aided Design. 511–519. DOI:https://doi.org/10.1109/ICCAD.2000.896524

[37] Gerard J. Holzmann. 1997. The model checker SPIN. IEEE Transactions on Software Engineering 23, 5 (1997), 279–295.

DOI:https://doi.org/10.1109/32.588521

[38] Homer Hsing. 2014. OpenCores.org: Tiny AES. Retrieved November 17, 2017 from https://opencores.org/project,

tiny_aes.

[39] Intel Corporation. 2016. Intel®64 and IA-32 Architectures Software Developer Manual: Vol. 2 Instruction Set Refer-

ence. Retrieved November 17, 2017 from https://software.intel.com/en-us/articles/intel-sdm.

[40] Himanshu Jain, Daniel Kroening, Natasha Sharygina, and Edmund M. Clarke. 2005. Word level predicate abstraction

and refinement for verifying RTL verilog. In Proceedings of Design Automation Conference. 445–450. DOI:https://doi.

org/10.1145/1065579.1065697

[41] Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. 2010. Oracle-guided component-based program

synthesis. In Proceedings of the International Conference on Software Engineering. 215–224. DOI:https://doi.org/10.

1145/1806799.1806833

[42] Ranjit Jhala and Kenneth L. McMillan. 2001. Microarchitecture verification by compositional model checking. In

Proceedings of the International Conference on Computer Aided Verification, Vol. 2102. 396–410. DOI:https://doi.org/

10.1007/3-540-44585-4_40

[43] Suho Lee and Karem A. Sakallah. 2014. Unbounded scalable verification based on approximate property-directed

reachability and datapath abstraction. In Proceedings of the International Conference on Computer Aided Verification.

849–865. DOI:https://doi.org/10.1007/978-3-319-08867-9_56

[44] Helger Lipmaa, David Wagner, and Phillip Rogaway. 2000. Comments to NIST Concerning AES Modes of Operation:

CTR-Mode Encryption. Retrieved May 5, 2018 from http://kodu.ut.ee/ lipmaa/papers/lrw00/html/ctr.html.

[45] Derek Lockhart, Gary Zibrat, and Christopher Batten. 2014. PyMTL: A unified framework for vertically inte-

grated computer architecture research. In Proceedings of the International Symposium on Microarchitecture. 280–292.

DOI:https://doi.org/10.1109/MICRO.2014.50

[46] Daniel Lustig, Michael Pellauer, and Margaret Martonosi. 2015. Pipe check: Specifying and verifying microarchitec-

tural enforcement of memory consistency models. In Proceedings of the Annual International Symposium on Microar-

chitecture. 635–646. DOI:https://doi.org/10.1109/MICRO.2014.38

[47] Daniel Lustig, Geet Sethi, Margaret Martonosi, and Abhishek Bhattacharjee. 2016. COATCheck : Verifying memory

ordering at the hardware-OS interface. In Proceedings of the International Conference on Architectural Support for

Programming Languages and Operating Systems, Vol. 1. 233–247. DOI:https://doi.org/10.1145/2872362.2872399

[48] Kenneth L. Mcmillan. 1993. Symbolic Model Checking. Springer.

[49] Robin Milner. 1989. Communication and Concurrency. Prentice Hall.

[50] Razvan Nane, Vlad Mihai Sima, Christian Pilato, Jongsok Choi, Blair Fort, Andrew Canis, Yu Ting Chen, Hsuan Hsiao,

Stephen Brown, Fabrizio Ferrandi, Jason Anderson, and Koen Bertels. 2016. A survey and evaluation of FPGA high-

level synthesis tools. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 35, 10 (2016),

1591–1604. DOI:https://doi.org/10.1109/TCAD.2015.2513673

[51] R. Nikhil. 2004. Bluespec system verilog: Efficient, correct RTL from high-level specifications. In Proceedings of the

International Conference on Formal Methods and Models for Co-Design. 69–70. DOI:https://doi.org/10.1109/MEMCOD.

2004.1459818

[52] Susan Owicki and David Gries. 1976. An axiomatic proof technique for parallel programs. Acta Informatica 6, 4 (1976),

319–340. DOI:https://doi.org/10.1007/BF00268134

[53] Preeti Ranjan Panda. 2001. SystemC - A modeling platform supporting multiple design abstractions. In Proceedings

of the International Symposium on Systems Synthesis. 75–80. DOI:https://doi.org/10.1109/ISSS.2001.156535

ACM Transactions on Design Automation of Electronic Systems, Vol. 24, No. 1, Article 10. Pub. date: December 2018.

https://doi.org/10.1155/2008/647953
https://doi.org/10.1109/FMCAD.2014.6987600
https://doi.org/10.1007/978-3-642-22110-1_32
https://doi.org/10.1145/235321.235322
https://doi.org/10.1145/2435227.2435257
https://doi.org/10.1109/ICCAD.2000.896524
https://doi.org/10.1109/32.588521
https://opencores.org/project,tiny_aes
https://opencores.org/project,tiny_aes
https://software.intel.com/en-us/articles/intel-sdm
https://doi.org/10.1145/1065579.1065697
https://doi.org/10.1145/1065579.1065697
https://doi.org/10.1145/1806799.1806833
https://doi.org/10.1145/1806799.1806833
https://doi.org/10.1007/3-540-44585-4_40
https://doi.org/10.1007/3-540-44585-4_40
https://doi.org/10.1007/978-3-319-08867-9_56
http://kodu.ut.ee/ ignorespaces lipmaa/papers/lrw00/html/ctr.html
https://doi.org/10.1109/MICRO.2014.50
https://doi.org/10.1109/MICRO.2014.38
https://doi.org/10.1145/2872362.2872399
https://doi.org/10.1109/TCAD.2015.2513673
https://doi.org/10.1109/MEMCOD.2004.1459818
https://doi.org/10.1109/MEMCOD.2004.1459818
https://doi.org/10.1007/BF00268134
https://doi.org/10.1109/ISSS.2001.156535

10:24 B.-Y. Huang et al.

[54] Christian Pilato and Fabrizio Ferrandi. 2013. Bambu: A modular framework for the high level synthesis of memory-

intensive applications. In Proceedings of the International Conference on Field Programmable Logic and Applications.

13–16. DOI:https://doi.org/10.1109/FPL.2013.6645550

[55] Christian Pilato, Qirui Xu, Paolo Mantovani, Giuseppe Di Guglielmo, and Luca P. Carloni. 2016. On the design of

scalable and reusable accelerators for big data applications. In Proceedings of the ACM International Conference on

Computing Frontiers. 406–411. DOI:https://doi.org/10.1145/2903150.2906141

[56] Jing Pu, Steven Bell, Xuan Yang, Jeff Setter, Stephen Richardson, Jonathan Ragan-Kelley, and Mark Horowitz. 2016.

Programming heterogeneous systems from an image processing DSL. ACM Transactions on Architecture and Code

Optimization 14 (2016), 26:1–26:25. DOI:https://doi.org/10.1145/3107953

[57] Jonathan Ragan-Kelley, Andrew Adams, Sylvain Paris, Frédo Durand, Connelly Barnes, and Saman Amarasinghe.

2013. Halide: A language and compiler for optimizing parallelism, locality, and recomputation in image process-

ing pipelines. In Proceedings of the Conference on Programming Language Design and Implementation. 519–530. DOI:
https://doi.org/10.1145/2491956.2462176

[58] Alastair Reid. 2017. Trustworthy specifications of ARM® v8-A and v8-M system level architecture. In Proceedings

of the Conference on Formal Methods in Computer-Aided Design. 161–168. DOI:https://doi.org/10.1109/FMCAD.2016.

7886675

[59] Alastair Reid, Rick Chen, Anastasios Deligiannis, David Gilday, David Hoyes, Will Keen, Ashan Pathirane, Owen

Shepherd, Peter Vrabel, and Ali Zaidi. 2016. End-to-end verification of ARM® processors with ISA-formal. In Pro-

ceedings of the International Conference on Computer Aided Verification, Vol. 9780. 42–58. DOI:https://doi.org/10.1007/

978-3-319-41540-6_3

[60] Paul Rosenfeld, Elliott Cooper-Balis, and Bruce Jacob. 2011. DRAMSim2: A cycle accurate memory system simulator.

IEEE Computer Architecture Letters 10, 1 (2011), 16–19. DOI:https://doi.org/10.1109/L-CA.2011.4

[61] Yakun Sophia Shao, Brandon Reagen, Gu-Yeon Wei, and David Brooks. 2015. The Aladdin approach to accelerator

design and modeling. IEEE Micro 35, 3 (2015), 58–70. DOI:https://doi.org/10.1109/MM.2015.50

[62] Pramod Subramanyan, Bo-Yuan Huang, Yakir Vizel, Aarti Gupta, and Sharad Malik. 2017. Template-based parame-

terized synthesis of uniform instruction-level abstractions for SoC verification. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems 99 (2017). DOI:https://doi.org/10.1109/TCAD.2017.2764482

[63] Pramod Subramanyan, Sharad Malik, Hareesh Khattri, Abhranil Maiti, and Jason Fung. 2016. Verifying information

flow properties of firmware using symbolic execution. In Proceedings of the Conference on Design, Automation and

Test in Europe. 1393–1398. DOI:https://doi.org/10.3850/9783981537079_0793

[64] Pramod Subramanyan, Yakir Vizel, Sayak Ray, and Sharad Malik. 2017. Template-based synthesis of instruction-level

abstractions for SoC verification. In Proceedings of the Conference on Formal Methods in Computer-Aided Design. 160–

167. DOI:https://doi.org/10.1109/FMCAD.2015.7542266

[65] Impulse Accelerated Technologies. 2003. Impulse CoDeveloper C-to-FPGA Tools. Retrieved November 17, 2017 from

http://www.impulseaccelerated.com/products_universal.htm.

[66] Caroline Trippel, Yatin A. Manerkar, Daniel Lustig, Michael Pellauer, and Margaret Martonosi. 2017. TriCheck: Mem-

ory model verification at the trisection of software, hardware, and ISA. In Proceedings of International Conference

on Architectural Support for Programming Languages and Operating Systems. 119–133. DOI:https://doi.org/10.1145/

3093337.3037719

[67] Muralidaran Vijayaraghavan, Adam Chlipala, Arvind, and Nirav Dave. 2015. Modular deductive verification of mul-

tiprocessor hardware designs. In Proceedings of the International Conference on Computer Aided Verification. 109–127.

DOI:https://doi.org/10.1007/978-3-319-21668-3_7

[68] Yakir Vizel, Orna Grumberg, and Sharon Shoham. 2012. Lazy abstraction and SAT-based reachability in hardware

model checking. In Proceedings of the International Conference on Formal Methods in Computer-Aided Design. 173–

181.

[69] Andrew Waterman, Yunsup Lee, Rimas Avizienis, David A. Patterson, and Krste Asanović. 2017. The RISC-V In-

struction Set Manual Volume II: Privileged Architecture Version 1.9.1. Retrieved November 17, 2017 from https://

riscv.org/specifications/privileged-isa/.

[70] Tjark Weber. 2004. Satisfiability modulo theories. In Handbook of Satisfiability. Vol. 185. 825–885. DOI:https://doi.

org/10.1145/1995376.1995394

Received January 2018; revised June 2018; accepted September 2018

ACM Transactions on Design Automation of Electronic Systems, Vol. 24, No. 1, Article 10. Pub. date: December 2018.

https://doi.org/10.1109/FPL.2013.6645550
https://doi.org/10.1145/2903150.2906141
https://doi.org/10.1145/3107953
https://doi.org/10.1145/2491956.2462176
https://doi.org/10.1109/FMCAD.2016.7886675
https://doi.org/10.1109/FMCAD.2016.7886675
https://doi.org/10.1007/978-3-319-41540-6_3
https://doi.org/10.1007/978-3-319-41540-6_3
https://doi.org/10.1109/L-CA.2011.4
https://doi.org/10.1109/MM.2015.50
https://doi.org/10.1109/TCAD.2017.2764482
https://doi.org/10.3850/9783981537079_0793
https://doi.org/10.1109/FMCAD.2015.7542266
http://www.impulseaccelerated.com/products_universal.htm
https://doi.org/10.1145/3093337.3037719
https://doi.org/10.1145/3093337.3037719
https://doi.org/10.1007/978-3-319-21668-3_7
https://penalty -@M riscv.org/specifications/privileged-isa/
https://penalty -@M riscv.org/specifications/privileged-isa/
https://doi.org/10.1145/1995376.1995394
https://doi.org/10.1145/1995376.1995394

